HVAC Apprenticeship Curriculum

Revised June 2011
College of Western Idaho
in cooperation with
Idaho State Division of Professional Technical Education

HVAC Year One

Total Hours: Minimum = **144** CWI = **165**

Basic math – Module 1

Minimum: 12 hours, CWI: 30 hours

- Whole numbers
- Addition and subtraction
- Fractions
- o Decimals
- Measurement of
 - Lines
 - Area
 - Volume
 - Weights
 - Angles
 - Pressure
 - Vacuum
 - Temperature
- o Trade related math

Objectives:

Perform addition, subtraction, multiplication, and division calculations of whole numbers

Perform addition and subtraction calculations of common fractions

Perform multiplication and division calculations of common fractions

Perform addition, subtraction, multiplication, and division calculations of decimal fractions

Perform ratio and proportion calculations

Perform percent, percentage, and discount calculations

Perform angular, length, and converted temperature measure calculations

Perform area calculations

Perform volume calculations

Perform estimates and billing calculations

Basic Safety Hand and Power Tools – Module 2

Minimum: 18 hours. CWI: 18 hours

- OSHA 10 hour construction training
- Tools
 - Basic hand and power tools
 - Soldering and brazing

Objectives:

Describe potential excavation site hazards (1hr)

Explain proper personal protective equipment use (1hr)

Describe proper material handling, storage, use, and disposal

Describe ladder, stairway and scaffold hazards and proper use

Describe jobsite electrical hazards and proper lockout/tagout use

Describe proper refrigerant and pressure vessel usage and storage

Identify MSDS properties for refrigerants (1hr)

Describe proper hand and power tool use

Describes soldering and brazing methods

Fuel gas piping and venting – Module 3

Minimum: 60 hours, CWI: 60 hours

- Installation of fuel piping according to code and industry standards
- Installation of venting according to code and industry standards
- o Installation of combustion air according to code and industry standards
- o Installation of make- up air according to code and industry standards
- IFGC requirements

Objectives:

Identify International Code administrative and enforcement rules

Define key terms as applied to the IFGC

Describe the building structural safety requirements for fuel gas equipment installation

Examine fuel gas equipment combustion, ventilation and dilution air requirements

Identify fuel gas equipment location, access and service space requirements

Describe proper appliance condensate disposal and clearance reduction methods

Perform gas pipe sizing exercises

Identify proper gas pipe installation methods

Describe proper gas pipe inspection, testing and purging procedures

Describe chimney and vent types and construction

Examine chimney installation requirements

Examine gas vent installation requirements

Describe gas appliance category I, II, III and IV characteristics

Identify proper gas vent connector installation requirements

Describe category I venting principals

Perform single appliance category I vent sizing exercises

Perform multiple appliance category I vent sizing exercises

Determine capacity penalties for offsets in common vent and vent connectors

Examine specific fuel gas appliance installation requirements

Describe mechanical equipment location, access and service space requirements

Introduction to code – Module 4

Minimum: 6 hours, CWI: 9 hours

How to access information related to HVAC industry

- Idaho Code and Administrative rules
- International Mechanical Code

Objectives:

Describe Idaho HVAC code and Administrative Rules requirements Identify International Mechanical Code general chapter requirements List International Mechanical Code HVAC specific equipment sections

Energy sources – Module 5

Minimum: 9 hours, CWI: 9 hours

- Principles of different fuel sources
- o Fuel Oil
- o Electric
- o Gas/LP
- Hydro / geothermal*
- Wind / solar*

Objectives:

Explain natural, LP gas, and fuel oil combustion characteristics

Describe the development and application of geothermal heat pump systems

Describe the development and application of renewable energy systems

- Basic systems overview Module 6
 Minimum: 12 hours, CWI: 12 hours
 - Warm air furnaces
 - Split system air conditioners
 - Commercial air conditioning systems
 - Forced air duct systems

Describe mid-efficiency and high efficiency furnace operation

Describe the typical configuration of residential split air conditioning systems

List the various types of commercial air conditioning systems and their application

Describe the configuration of four common duct systems

Intro to applied science – Module 7

Minimum: 24 hours, CWI: 24 hours

- History of HVAC/R
- o Temperature measurement and conversion
- Thermodynamics
- o Pressure / vacuum
- o Refrigeration cycle and components
- o Basic elements of matter
- o Applied math 6 hours

Objectives:

Describe a brief modern history of HVAC

Describe energy types and their properties

Perform energy conversion calculations

Perform sensible, latent and total heat calculations

Differentiate between saturated, superheated, and subcooled refrigerant

Explain atmospheric, absolute, and gauge pressure relationship

Convert gauge pressure, absolute pressure and vacuum

Diagram a basic refrigeration cycle identifying pressure, temperature and state of refrigerant List the type and function of the four major refrigeration components

Customer Service – Module 8

Minimum: 3 hours. CWI: 3 hours

- Cleanliness
 - Site
 - Personal
- o Professional appearance
- o Timeliness
- Work ethic
- Communication skills

Objectives:

Describe good customer communication procedures

HVAC Year Two

Total Hours: Minimum = **144**

CWI = 156

Appliance installation – Module 1
 Minimum hours: 24, CWI hours: 24

Oil and fuel gas appliance installation

- Split and packaged air conditioning system installation
- o Forced-air system installation
- o NEC electrical code as applied to HVAC installation
- o IFGC, IMC, IRC code requirements for HVAC installation

Explain HVAC electrical branch circuit sizing and installation factors

Interpret HVAC manufacturer electrical name plate data

Explain combustion air and venting requirements for Category I, III and IV appliances

Describe gas appliance installation, start-up and checkout procedures

Describe oil appliance installation, start-up and checkout procedures

Describe sheet metal, fiberglass and flex duct installation procedures

Identify split and packaged air conditioning unit components

Explain split and packaged air conditioning unit installation guidelines

- Introduction to blueprints and specifications Module 2
 Minimum hours: 24, CWI hours: 24
 - Site plans, floor plans and elevation drawings
 - Mechanical, plumbing and electrical drawings
 - Specifications
 - Shop drawings and submittals
 - Takeoff procedures
 - As-built drawings

Objectives:

Read blueprints and architect plans

Interpret mechanical, plumbing and electrical drawings

Interpret specification documents and apply to plans

Interpret shop drawings and apply to plans and specifications

Describe a submittal and its derivation, routing and makeup

Develop cut lists for duct runs from shop drawings

Interpret as-built modifications on HVAC mechanical plans

Perform an HVAC equipment and material takeoff

Basic electricity – Module 3

Minimum hours: 60, CWI hours: 60

- Basic electrical theory
- Electrical safety
- Series and parallel circuits
- AC and DC theory
- HVAC electrical control devices
- HVAC electrical load devices
- HVAC electrical schematic diagrams
- Power generation and distribution
- o HVAC branch circuits
- Applied math 9 hours integrated
 - Ohm's Law
 - Engineering notation
 - Single-phase, three-phase and ECM Motors
- Single-phase motor starting components

Objectives:

Examine basic electrical theory

Explain series circuit characteristics

Explain parallel circuit characteristics

Calculate electrical circuit values

Analyze series/parallel circuits

Describe electrical meter operation

Measure electrical circuit values

Identify electrical symbols

Draw basic HVAC electrical circuit diagrams

Interpret basic HVAC schematic diagrams

Interpret advanced HVAC schematic diagrams

Explain AC circuit characteristics

Describe power distribution transformer systems

Calculate HVAC branch circuit conductor, breaker and disconnect sizes

Examine basic motor theory

Draw single phase motor diagrams

Explain single-phase motor starting relay operation

Calculate motor capacitor replacement values

Explain three-phase motor operation

Explain ECM motor operation

Indoor air quality – Module 4

Minimum hours: 15, CWI hours: 15

- Pollutants and pollutant pathways
- o Prevention, control and remediation strategy
- Tools and testing
- Energy recovery ventilation systems*
- Filters and humidifiers*
- IAQ checklists
- Home energy/IAQ evaluation*

Objectives:

Describe indoor air quality factors as related to HVAC

Identify various indoor air quality pollutant and pollutant pathways

Describe indoor air quality evaluation and measurement tools

Explain appropriate prevention, control and resolution strategies for IAQ issues

Determine guidelines for involving professionals in IAQ issues

Residential load calculation – Module 5

Minimum hours: 21, CWI hours: 33 hours

Calculations to determine residential heat gain / loss*

Objectives:

Examine importance of heat load calculation in building design

Differentiate sensible, latent and total heat gain/loss

Determine U values and R values for various building construction components

Calculate Btu gain/loss values using HTM and temperature difference factors

Determine heating and cooling load temperature difference and daily range values

Explain the relationship between house orientation and solar heat gain

Perform building component area and volume calculations from blueprints

Perform winter/summer infiltration calculations using Manual J procedures

Perform heat gain calculations using Manual J procedures

Perform heat loss calculations using Manual J procedures

Determine sensible, latent and total heat house block and room values

HVAC Year Three

Total Hours: Minimum = **144**

CWI = **168**

Basic controls – Module 1

Minimum: 30 hours, CWI: 39 hours

- Basic electro-mechanical control devices
- o Gas, oil, electric and hydronic heating controls
- Manufacturer wiring diagram analysis
- o Troubleshooting electric control devices
- o Residential air conditioning control systems
- o Commercial and industrial air conditioning control systems
- Electronic control devices
- o Electronic control module troubleshooting procedures

Objectives:

Explain contactor, relay and overload operation

Explain thermostat, pressure switch and transformer operation

Describe standing pilot gas burner control systems

Describe intermittent and direct ignition gas burner control systems

Examine gas furnace manufacturer wiring diagrams

Explain oil furnace primary control operation

Describe electric furnace operating sequence

Describe hydronic heating system controls

Perform gas, oil and electric heating control system troubleshooting procedures

Describe motor circuit troubleshooting procedures

Examine packaged and split air conditioning systems wiring diagrams

Identify commercial and industrial air conditioning system control methods

Describe basic electronic control system troubleshooting procedures

System air flow and duct sizing – Module 2

Minimum: 30 hours, CWI: 30 hours

- o Basic principles of air flow
- Air distribution system components
- Air distribution system application and configuration
- Air flow calculation
- Primary equipment selection using Manual J and Manual S*
- Secondary equipment selection using manufacturer tables
- Basic duct system layout from floor plans
- Duct system sizing using Manual D*

Objectives:

Describe basic air flow characteristics

Explain duct system pressures

Calculate duct system air flow

Determine proper air flow requirements

Describe air distribution system configurations

Select primary heating/cooling equipment using Manual J and Manual S data

Determine air-side component pressure drops from manufacturer tables

Sketch a residential duct system layout using a home floor plan and Manual D tables

Complete Manual D effective length, friction rate and duct sizing worksheets

Perform Manual D duct sizing exercises

Basic air conditioning and refrigeration – Module 3

Minimum: 30 hours, CWI: 39 hours

- Thermodynamics and heat transfer principals
- Refrigeration cycle operating principals
- o Pressure / temperature relationship
- o Refrigeration system components and operation
- Refrigerant properties and characteristics

- Refrigerant oils types and application
- Refrigeration system access tools and procedures
- Refrigerant management- EPA Section 608*
- o Refrigeration system recovery, evacuation and charging procedures

Explain latent, sensible and total heat differences

Diagram refrigeration cycle conditions and components

Explain pressure-enthalpy diagrams

Examine compressor design and efficiency

Explain water/air-cooled condenser operation and performance

Examine metering device design and operation

Describe evaporator types

Identify proper refrigerant line sizing and installation practices

Explain various refrigerant physical and chemical properties

Explain refrigerant oil properties and application

Describe proper refrigeration system access procedures

Differentiate between recovered, recycled and reclaimed refrigerant

Explain proper refrigerant recovery, evacuation and charging procedures

Introduction to Hydronics – Module 4

Minimum: 6 hours, CWI: 12 hours

- Operating principles
- Piping systems
- o Preventative maintenance
- Components
- System overview

Objectives:

Identify hydronic piping system types

Describe hydronic heating system components

Explain hydronic heating systems drain and fill procedures

Diagram basic hydronic heating system control circuits

- Basic sheet metal Module 5
- Minimum: 39 hours, CWI: 33 hours (If performing actual sheet metal layout & fabrication in a shop setting, it will take 39 hours to complete these objectives. If using construction paper to layout and fabricate in a classroom setting, less time is required to complete the objectives.)
 - Sheet metal layout and processes
 - o Parallel line development and fabrication
 - o Radial line development and fabrication
 - Triangulation development and fabrication
 - Layout and fabricate various duct fittings

Objectives:

Define basic sheet metal layout terms

Explain three methods of sheet metal layout development

Explain parallel line development procedures

Layout and fabricate the following sheet metal fittings: Pittsburgh seam and square elbow Layout and fabricate the following sheet metal fitting: 90 degree elbow and transition

Explain radial line development procedures

Layout and fabricate the following sheet metal fitting: symmetrical tapered duct

Layout and fabricate the following sheet metal fitting: square to square tapered duct

Explain triangulation development procedures

Layout and fabricate the following sheet metal fitting: two-way offset transition Layout and fabricate the following sheet metal fitting: tapered duct section

- Introduction to service Module 6 Minimum: 9 hours, CWI: 15 hours
 - o Air conditioning mechanical, electrical and refrigeration system analysis
 - o Gas heating system mechanical, electrical and combustion analysis
 - o Oil heating system mechanical, electrical and combustion analysis
 - o Electric heating system mechanical and electrical analysis
 - Heating and cooling equipment maintenance procedures*

Describe air conditioning system problems and prescribe corrections

Describe gas heating system problems and prescribe corrections

Describe oil heating system problems and prescribe corrections

Describe electric heating system problems and prescribe corrections

List gas, oil and electric heating and air conditioning maintenance procedures

HVAC Year Four

Total Hours: Minimum = **144** CWI = **162**

Introduction to Testing and Balancing – Module 1

Minimum: 12 hours, CWI: 12 hours

- Psychrometrics Fundamentals of the Properties of Air
- o Psychrometrics Calculating the Performance of HVAC Equipment
- Testing and Balancing Tools*
- Basic Air & Water Testing and Balancing Procedures*

Objectives:

Explain psychrometric properties

Diagram psychrometric conditions

Describe air flow and water flow measuring devices

Explain basic air flow and water flow balancing procedures

Introduction to HVAC Control Strategies – Module 2

Minimum: 6 hours, CWI: 6 hours

- HVAC Systems & Control Basics
- o Electric Control Systems
- Pneumatic & DDC Control Systems

Objectives:

Describe basic HVAC control principals

Interpret basic HVAC pneumatic control diagrams

Explain DDC control system basic operation

Advanced Air Conditioning and Heat Pump Systems – Module 3

Minimum: 39 hours, CWI: 42 hours

- o Commercial Air Conditioning Systems
- Packaged Unit Air Handling Systems
- o Water Chillers
- Cooling Towers
- Basic Heat Pump Theory
- Heat Pump Components
- Heat Pump Charging Procedures
- Heat Pump Electrical Systems
- Heat Pump Defrost Systems

- Heat Pump Service Procedures
- Heat Pump Troubleshooting Procedures
- Water Source Heat Pump Design*
- Water Source Heat Pump Components
- Water Source Heat Pump Troubleshooting Procedures

Explain commercial fan coil unit operation

Examine package unit building system configurations

Describe building chilled water system operation

Describe induced and forced draft cooling tower operation

Explain heat pump heating and cooling cycles

Describe the purpose and operation of various heat pump components

Prescribe heat pump charging procedures

Examine heat pump manufacturer electrical wiring diagrams

Differentiate heat pump time/temperature and demand defrost control systems

Explain heat pump service checklist readings

Interpret air source heat pump diagnostics

Explain geothermal heat pump system applications

Describe water-to-air and water-to-water heat pump operation

Interpret water source heat pump diagnostics

Advanced Service – Module 4

Minimum: 24 hours. CWI: 39 hours

- o Air Conditioning Air Side Troubleshooting Procedures
- Air Conditioning Refrigeration Side Troubleshooting Procedures
- Air Conditioning Service Diagnostics
- o Air Conditioning Electrical Schematics & Troubleshooting Procedures
- o Gas Furnace Electrical Schematics & Troubleshooting Procedures
- Gas Furnace Service Diagnostics
- Electric Furnace Service Diagnostics
- Oil Furnace Service Diagnostics

Objectives:

Prescribe air flow troubleshooting procedures

Explain standard and high efficiency air conditioner operation

Explain service checklist readings

Determine variable load air conditioning operating conditions

Prescribe refrigeration side troubleshooting procedures

Troubleshoot residential and commercial control systems

Interpret air conditioning manufacturer electrical wiring diagrams

Perform interactive air conditioning technician service calls

Prescribe gas furnace troubleshooting procedures

Perform interactive gas furnace technician service calls

Prescribe electric furnace troubleshooting procedures

Prescribe oil furnace troubleshooting procedures

System Integration and Design (Project format) – Module 5

Minimum: 12 hours, CWI: 12 hours

- Residential Comfort and Design Standards*
- Primary Equipment Selection and Sizing*
- Primary Equipment Installation and Operation*
- System Replacement and Retrofit*

Objectives:

Describe residential comfort and design standards

Examine residential equipment selection and sizing requirements List residential equipment installation and startup procedures Prescribe residential equipment retrofit procedures

Code review - Module 6

Minimum: 42 hours, CWI: 42 hours

- Review of International Fuel Gas Code (27 hrs)
- Review of International Mechanical Code* (9 hrs)
- Review of National Electrical Code (6 hrs)

Objectives:

Identify International Code administrative and enforcement rules

Describe the building structural safety requirements for fuel gas equipment installation

Examine fuel gas equipment combustion, ventilation and dilution air requirements

Identify fuel gas equipment location, access and service space requirements

Perform gas pipe sizing exercises

Identify proper gas pipe installation methods

Examine chimney and gas vent installation requirements

Perform single and multiple category I vent sizing exercises

Examine specific fuel gas appliance installation requirements

Describe mechanical equipment location, access and service space requirements

Identify proper supply, return and exhaust air system installation methods

Examine specific mechanical equipment installation requirements

Identify proper HVAC equipment branch circuit installation methods

Perform HVAC equipment branch circuit sizing exercises

Project Management – Module 7

Minimum: 9 hours, CWI: 9 hours

- Personnel Management
- Communication Skills
- o Project Control
- Inter-Trade Relations
- Work Ethics

Objectives:

Perform problem solving and decision making exercises

Perform active communication exercises

Describe proper project control methods

* Denotes curriculum areas that cover energy efficiency, environmental impact and green construction.

Performance objectives are divided into 3 hour blocks of classroom instruction unless otherwise noted.